♟️
zarr
search
⌘Ctrlk
♟️
zarr
  • Zarr Cloud Data Conversion
  • AI Ready Checklist
  • AI
  • Preprocessing
    • Indexing Public Bucket
    • Raw Data
    • Time Convention
    • Bottom Detection L0
    • Xarray
    • Zarr
    • Uncalibrated Data
    • Boto3 Notes
    • Dask
    • Geospatial Indexing
    • Regrid & Interpolate
  • Cloud
  • Analysis
  • Web
  • Ideas
  • Reading
  • Mapping
  • Notes
  • Datasets
  • Echopype
    • Echopype
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. Preprocessing

Regrid & Interpolate

This notebook walks through the procedure of regridding and interpolating the the data between watercolumn samples so that a uniform depth is associated with each measurement.

Note: work in progress

LogoGoogle Colabcolab.research.google.comchevron-right

This notebook is most recent (Jan 2024) workflow for gridding the data to a new set of depths and interpolating 1d:

LogoGoogle Colabcolab.research.google.comchevron-right

Further reading on a proper resample method:

LogoRegrid xarray Dataset with multiple variables — xESMF 0.9.2.dev1+g0ca1ab1a3.d20251127 documentationxesmf.readthedocs.iochevron-right
https://climate-cms.org/posts/2021-04-09-xesmf-regrid.htmlclimate-cms.orgchevron-right
  • https://ncar.github.io/esds/posts/2021/regrid-observations-pop-grid/ promising: https://github.com/EXCITED-CO2/xarray-regrid https://xesmf.readthedocs.io/en/latest/notebooks/Curvilinear_grid.html https://corteva.github.io/rioxarray/stable/examples/reproject.html https://climate-cms.org/posts/2021-04-09-xesmf-regrid.html arrow-up-right

PreviousGeospatial Indexingchevron-leftNextCloudchevron-right

Last updated 2 years ago